413_binomial
Binomial Coefficient and Binomial Identity Pascal’s Triangle \begin{matrix} {0 \choose 0}\\ {1 \choose 0} & {1 \choose 1}\\ {2 \choose 0} & {2 \choose 1} & {2 \choose 2}\\ {3 \choose 0} & {3 \choose 1} & {3 \choose 2} & {3 \choose 3}\\ {4 \choose 0} & {4 \choose 1} & {4 \choose 2} & {4 \choose 3} & {4 \choose 4}\\ .\\ .\\ . \end{matrix} Pascal’s Formula For all integers $n$ and $k$ with $1 \leq k \leq n - 1$, we have: $$ {n \choose k} = {{n-1} \choose k} + {{n-1} \choose {k-1}} $$...